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ABSTRACT

3D reconstruction has been attracting increasing attention in
the past few years. With the surge of deep neural networks,
the performance of 3D reconstruction has been improved
significantly. However, the voxel reconstructed by extant ap-
proaches usually contains lots of noise and leads to heavy
computation. In this paper, we define a new voxel represen-
tation, named Weighted Voxel. It provides more abundant
information, facilitating the subsequent learning and general-
ization steps. Unlike regular voxel which consists of zero-one,
the proposed Weighted Voxel makes full use of the structure
information of voxels. Experimental results demonstrate that
Weighted Voxel not only performs better in reconstruction
but also takes less time in training.
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1 INTRODUCTION

Reliably recovering 3D shape from one or more images of
an object from arbitrary viewpoints has become feasible in
computer vision over the last few years due to advances in
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Figure 1: Reconstruction samples of (a) cars (b) cab-
inets (c) speakers (d) sofas on the ShapeNet testing
dataset. Weighted Voxel preserves more structural
details of 3D objects.

deep learning [13]. Most of the state-of-the-art methods for
3D reconstruction, including structure from motion (SFM)
[5] and simultaneous localization and mapping (SLAM) [6]
are subject to a number of assumptions. For example, Both
[9] and [7] assume that there should be matched features
across images in different viewpoints. Several studies have
proved that reconstruct from views which are separated by a
large baseline [14] or lack of texture on objects [1] may be
difficult and problematic. These assumptions are too strong
to hold in many real applications.

In order to remedy the issue related to large baselines,
methods with a different philosophy have been proposed in
the past few years. With the help of deep neural networks, 3D
reconstruction has been achieved tremendous success. Several
methods [8, 16] proposed solved the daunting problem of
reconstructing the shape of an object from a single view.
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Figure 2: The network architecture for 3D reconstruction. Both of them consist of an encoder, a 3D convolu-
tional LSTM, and a decoder. In 3D-R2N2, the reconstructed voxels are composed of zeros and ones, while in
Weighted Voxel, the voxel values are filled with integers.

However, a single view cannot contain sufficient information
of 3D shape and sometimes lead to high distortion [15]. 3D-
R2N2 [4] takes fully use of supervision and recovers the
approximated 3D shape from arbitrary viewpoints.

In this paper, we follow the same spirit as the 3D-R2N2, but
with difference in voxel representation. Unlike regular voxel
which is made up of zeros and ones, Weighted Voxel proposed
in this paper takes structure information into account. In
Weighted Voxel, the value of each voxel is weighted summed
over its values of immediate neighbors. Experimental results
demonstrate that the proposed Weighted Voxel outperforms
3D-R2N2 (see Figure 1).

The main contributions of this paper are summarized as
follows:

• The proposed Weighted Voxel achieves higher voxel
Intersection-over-Union (IoU) than 3D-R2N2 does.

• The convergence rate of our method is much higher
than that of 3D-R2N2.

2 METHODS

Recurrent neural networks (RNNs) have shown great promise
in many sequence learning tasks [17]. Long Short-Term Mem-
ory (LSTM) [11], as one of the most successful implementa-
tions of the hidden states of an RNN, is adopted by both
baseline and our method to retain previous observations and
incrementally refine the reconstruction of 3D objects as more
observations are available. In the rest of this section, we
provide a brief introduction of the baseline and our method.

2.1 Baseline: 3D-R2N2

As one of the state-of-art methods for 3D reconstruction,
3D-R2N2 [4] makes it possible to recover the shape of 3D
objects from both single- and multi- view images. Besides,
it is able to overcome past challenges of images with wide
baseline viewpoints or insufficient texture.

The network of 3D-R2N2 is composed of three compo-
nents: a 2D convolutional neural network (2D-CNN), a 3D
convolutional LSTM (3D-LSTM), and a 3D deconvolutional
neural network (3D-DCNN), which is illustrated in Figure 2.

Encoder. The input images are encoded as features by
a 2D-CNN. The encoder consists of standard convolutional
layers, pooling layers, and leaky rectified linear units followed
by fully connected layers. Motivated by recent studies [10],
residual connections are added between standard convolu-
tional layers to speed up the optimization process. Finally,
the encoder outputs a feature vector whose dimension is 1024.

3D Convolutional LSTM. As the core part of the net-
work, the 3D-LSTM is made up of a set of structured Gated
Recurrent Units (GRUs) [3] with restricted connections.
There are n × n × n 3D-LSTM units distributed in a 3D
grid, where n is the spatial resolution of the 3D-LSTM grid.
Each 3D-LSTM unit inside the 3D grid, indexed (i, j, k),
has an independent hidden state ht,(i,j,k) that restricts to
be affected by its neighboring 3D-LSTM units. In addition,
convolution operations are applied between update gates and
hidden gates.

Decoder. The decoder receives hidden state ht from 3D-
LSTM. The resolution is increased by applying 3D convo-
lutions, non-linearities, and 3D unpooling until it reaches
the target output resolution. As with the encoders, residual
connections are followed by a final convolution.

2.2 Proposed method

The network structure of neural networks has evolved rapidly
recent years. In general, deeper and wider networks leads to
higher performance. However, it is hard to distinguish where
the main benefit comes from. To clearly demonstrate the
advantages of Weighted Voxel, we used a similar network as
the 3D-R2N2 (see Figure 2). In the proposed method, we
replace regular voxel with Weighted Voxel.

2.2.1 Voxel Structure. Unlike regular voxels whose values
are zeros and ones, the values in Weighted Voxels are integers.

In regular voxels, each voxel is independent of other voxels,
and the structure information is lost. Therefore, in the final
reconstructed voxels, there are unexpected holes in a dense
area or unexpected voxels in a sparse area. To tackle this
problem, we employ a filter with size of 3× 3× 3 that slides
over regular voxels (see Figure 3). The value of each voxel in
Weighted Voxel is weighted summed over voxel values of its
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Figure 3: Generation of Weighted Voxels. The gen-
eration of Weighted Voxels can be regarded as ap-
plying a convolutional kernel on regular voxels.

immediate neighbors. More formally, the value in Weighted
Voxel can be calculated as

y(i,j,k) =− ω(−1)υ(i,j,k)

−
i+1∑

m=i−1

j+1∑
n=j−1

k+1∑
p=k−1

(−1)υ(m,n,p)
(1)

where υ(i,j,k) ∈ {0, 1} denotes the value in the regular voxel,
and ω is set to 26. Specially, we define υ(i,j,k) = 0 when
i = −1, j = −1 or k = −1.

The voxels with values of zeros in regular voxels are ma-
pped onto negative values in Weighted Voxels. In contrast,
positive values in Weighted Voxels are mapped from voxels
whose values are ones in regular voxels. In addition, the
larger values in Weighted Voxels correspond the denser area
in the 3D object, while the smaller, the sparser. Compared
to regular voxel, Weighted Voxel provides more abundant
information that facilitates the subsequent reconstruction
steps.

2.2.2 Loss: 3D Voxel-wise Mean Squared Error. The loss
function used in the proposed method is defined as the mean
of squared error. Assume the ground truth and predicted
values are represented as y and ŷ, respectively. Therefore,
the loss function can be expressed as

ℓ(y, ŷ) =
1

n

∑
i,j,k

(y(i,j,k) − ŷ(i,j,k))
2 (2)

3 EXPERIMENTS AND RESULTS

For envaluating the performance of Weighted Voxel, we con-
ducted experiments on a desktop machine with an Intel Xeon
E3 1230 v5 CPU (3.40 GHz) and a Nvidia GeForce 1080
Ti GPU (11 GB Memory). Our implementation uses the
Theano framework and is available at https://github.com/
hzxie/Weighted-Voxel.

3.1 Experimental Settings

In this section, we describe how the experiments were con-
ducted. First, we introduce the dataset used in the experi-
ments. Next, we give formal definition of the metrics used to
evaluate the reconstruction results. Finally, we demonstrate
the details of training neural networks.
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Figure 4: Comparison of reconstruction IoUs of 3D-
R2N2 and our method. Our method outperforms the
3D-R2N2 in both convergence speed and IoU.

Dataset. We use a subset of ShapeNet [2] dataset for
training and testing, which contains 43,783 CAD models
from 13 major categories. The training and testing sets are
generated from the dataset, in which 35,021 models are used
for training, and 8,762 models for testing.

Metrics. We evaluated our performance of reconstruction
quality by voxel IoU, which can be formulated as following

IoU =

∑
i,j,k I(pred(i,j,k) > t)I(y(i,j,k))∑

i,j,k I(I(pred(i,j,k) > t) + I(y(i,j,k)))
(3)

where I(·) is an indicator function, t represents a voxelization
threshold, and y and pred are the ground truth and pre-
dicted voxel, respectively. Higher IoU values indicate better
reconstructions.

Training. In training the neural networks, we used vari-
able length of inputs ranging from one image to an arbitrary
number of images. Specifically speaking, the number of views
for each training sample in the same mini-batch is the same,
but the input length varied randomly across different mini-
batches. It makes the network can be applied to single- and
multi- view reconstruction. During training, the loss is only
be computed at the end of an input sequence in order to save
computational resources.

Network. The size of input images is set to 127 × 127,
while the output voxel is of size 32× 32× 32. We optimize
the networks by Adam [12] optimizer with a β1 of 0.9, a β2 of
0.999, a weight decay of 5×10−6. The slope of the leak is set to
0.1 for LeakyReLU layers, and the initial learning rate is 10−5.
The optimization stops after about 10 epochs for our method
and 40 epochs for the baseline. For fair comparison, we ran
the experiments with the same configuration as 3D-R2N2
except that the voxel threshold t is set to 0.4 in 3D-R2N2
while set to 5× 10−7 in Weighted Voxel.

https://github.com/hzxie/Weighted-Voxel
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Table 1: Per-category reconstruction of ShapeNet
compared using voxel IoU.

Category
# views = 5 # views ∈ [1, 5]

3D-R2N2 Ours 3D-R2N2 Ours

Aero 0.557 0.522 0.535 0.510
Bench 0.378 0.473 0.332 0.441
Cabinet 0.743 0.747 0.709 0.738
Car 0.833 0.810 0.801 0.802
Chair 0.480 0.511 0.451 0.491
Monitor 0.501 0.519 0.349 0.496
Lamp 0.373 0.361 0.362 0.350
Speaker 0.711 0.703 0.700 0.688
Rifle 0.561 0.526 0.515 0.499
Sofa 0.664 0.679 0.613 0.655
Table 0.491 0.530 0.454 0.511
Phone 0.686 0.671 0.607 0.648
Watercraft 0.557 0.589 0.515 0.559

* Bold face indicates higher IoU on test data.

3.2 Results and Discussion

In this section, we report a quantitative evaluation of the pro-
posed method in comparison with 3D-R2N2 on the ShapeNet
testing set. We conducted the experiments on both fixed and
variable length of inputs, and the experimental results are
revealed in Table 1, Figure 1 and Figure 4.

Overall results. We first investigate the quality of recon-
structed voxels under neural networks tested with 5 random
views. Table 1 shows that our method outperforms the base-
line method on 7 of 13 major categories. For neural networks
tested with variable length of input images ranging from 1
to 5, Weighted Voxel makes a remarkable improvement in
IoU compared to 3D-R2N2, where Weighted Voxel outper-
forms 3D-R2N2 on 9 of 13 categories. Figure 4 illustrates
the trend of voxel IoU as the training progresses. The overall
reconstruction quality improves as the number of epochs in-
creases. Besides, not only does our method have much higher
IoU, but also spends less time in convergence compared to
3D-R2N2. The IoU of Weighted Voxel remains unchanged
after 10 epochs, however, the IoU still varies after 16 epochs
in 3D-R2N2.

Per-category results. We also report the reconstruction
IoUs on each of the 13 categories in the testing set in Table
1. We observed that the reconstruction quality of cabinet
and watercraft is higher than that of 3D-R2N2. The shape
of cabinets and watercraft is quite simple that can be well
captured by Weighted Voxel. As shown in Figure 1, our recov-
ered 3D objects contains less holes than those generated by
3D-R2N2. Weighted Voxel performs worse in reconstructing
aeros, speakers and rifles. The objects in these categories
have high texture level and the silhouette of the 3D object
may be weaken by the filter of Weighted Voxel. In addition,
both baseline and our method have poor reconstruction IoU
in bench, lamp, and table categories. Compared with other
classes, objects in these classes have more shape variation.

4 CONCLUSION

In this paper, we proposed a novel voxel representation named
Weighted Voxel, where the value of each voxel is weighted
summed over values of its immediate neighbors. To compare
the reconstruction quality of 3D shape from variable or fixed
length of images, we conducted experiments on the ShapeNet
dataset. Experimental results demonstrate that Weighted
Voxel does better in preserving the shape of 3D objects than
3D-R2N2, especially in recovering from variable length of
inputs. Besides, the MSE loss function takes less time in
convergence, which accelerates the training process.
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